Clean Power

Ukrainian (UA)English (United Kingdom)

The National Academy of Sciences of Ukraine


The Institute of Electrodynamics

About Institute

DOI: https://doi.org/10.15407/publishing2020.55.101

ANALYSIS OF THE EFFICIENCY OF METHODS FOR INCREASING THE SIGNAL-TO-NOISE RATIO IN MEASURING SYSTEMS WITH PULSED CURRENT SENSORS

N.A. Shydlovska*, S.M. Zakharchenko**, I.L. Mazurenko***
Institute of Electrodynamics of the National Academy of Sciences of Ukraine,
Peremohy, 56, Kyiv-57, 03680, Ukraine,
e-mail: This e-mail address is being protected from spambots. You need JavaScript enabled to view it
* ORCID ID : http://orcid.org/0000-0002-9907-7416
** ORCID ID : http://orcid.org/0000-0002-8597-8045
*** ORCID ID : http://orcid.org/0000-0002-0146-7396

In the paper the main methods of increasing the ratio of the useful signal to noise when measuring pulsed electric currents are analyzed. A comparative analysis of the advantages and disadvantages of the main types of current sensors is given. The test bench and the methodology for experimental studies of the influence of the parameters of the measuring system on the level of noise and disturbance when measuring pulsed electric currents are described. Modes in which in laboratory conditions the ratio of the level of the useful signal to noise is greatest are determined. The mechanism of the influence of the value of the active electrical resistance of a resistive current sensor on the signal-to-noise ratio at a high sensitivity of the oscilloscope is disclosed. The efficiency of shielding the current sensor and its grounding in some modes and their inefficiency in others to increase the signal-to-noise ratio has been experimentally proved. Practical recommendations for improving the signal-to-noise ratio in systems with analog pulse current sensors are given. References 39, tables 2.
Key words: signal-to-noise ratio, pulsed electric current sensors, noise and disturbance reduction techniques, plasma-erosion treatment.



1. Lopatko K.G., Melnichuk M.G., Aftandilyants Y.G., Gonchar E.N., Boretskij V.F., Veklich A.N., Zakharchenko S.N., Tugay T.I., Tugay A.V., Trach V.V. Obtaining of metallic nanoparticles by plasma-erosion electrical discharges in liquid mediums for biological application. Annals of Warsaw University of Life Sciences - SGGW Agriculture. 2013. No 61. Pp.105-115.
2. Shydlovska N.A., Zakharchenko S.M., Cherkassky O.P. The Analysis of Electromagnetic Processes in Output Circuit of the Generator of Discharge Pulses with Non-linear Model of Plasma-erosive Load at Change Their Parameters in Wide Ranges. Tekhnichna Elektrodynamika. 2016. No 1. Pp. 87-95. (Rus). DOI: https://doi.org/10.15407/techned2016.01.087
3. Shcherba A.A., Suprunovska N.I. Cyclic transients in the circuits of electric discharge installations taking into account the influence of magnitude and rate of discharge currents rise on resistance of electric spark load. Tekhnichna Elektrodynamika. 2018. No 2. Pp. 3-10 (Rus) DOI: https://doi.org/10.15407/techned2018.02.003
4. Shcherba А.A., Suprunovskaya N.I., Ivashchenko D.S. Modeling of nonlinear resistance of electro-spark load taking into account its changes during discharge current flowing in the load and at zero current in it. Tekhnichna Elektrodynamika. 2014. No 5. Pp. 23-25 (Rus)
5. Shydlovska N.A., Zakharchenko S.M. Transients in RLC-circuits with a parametric loading. Tekhnichna Elektrodynamika. 2014. No 2. Pp. 3-10. (Rus)
6. Zakharchenko S.M. Physical Model of the Granulated Current-carrying Medium. Tekhnichna Elektrodynamika. 2012. No 6. - Pp. 19-26. (Rus)
7. Shydlovska N.A., Zakharchenko S.M., Cherkaskyi O.P. Parametric Model of Plasma-erosive Load, Adequate in the Wide Range of Change of Applied Voltage. Tekhnichna Elektrodynamika. 2017. No 3. Pp. 3-12. (Ukr) DOI: https://doi.org/10.15407/techned2017.03.003
8. Shydlovskaya N.A., Zakharchenko S.N., Cherkasskyi A.P. Nonlinear-parametrical Model of Electrical Resistance of Current-Carrying Granulated Mediums for a Wide Range of Applied Voltage. Tekhnichna Elektrodynamika. 2014. No 6. Pp. 3-17. (Rus)
9. Shydlovska N., Zakharchenko S., Cherkaskyi O. The influence of electric field parameters and temperature of hydrosols of metals’ plasma-erosive particles on their resistance and permittivity. Computational problems of electrical engineering. 2014. Vol. 4, No 2. Pp. 77-84.
10. Shidlovskaia N.A., Zakharchenko S.N. Modeling of the processes in a circuit of the discharge of the capacitor on a spark-erosion loading. Elektronnoe modelirovanie. 2012. Vol. 34. No 6. Pp. 73-81. (Rus)
11. Zakharchenko S.N. The Influence of intensity of an external electric field and temperature on resistance of hydrosols metals produced by spark erosion. Pratsi Instytutu Elektrodynamiky Natsionalnoi Akademii Nauk Ukrainy. Kyiv, 2012. Issue 33. Pp. 113-120. (Rus)
12. Shcherba A.A., Zakharchenko S.N., Suprunovskaya N.I., Shevchenko N.I. The influence of repetition rate of discharge pulses on electrical resistance of current-conducting granular layer during its electric-spark treatment. Tekhnichna Elektrodynamika. 2006. No 2. Pp. 10-14.
13. Zakharchenko S.M. Statistical Research of Equivalent Electric Resistance of the Heterogeneous Current-carrying Medium at its Electroerosive Processing on an Example of Granules of Aluminum in Water. Naukovyi Vіsnyk Natsіonalnoho hіrnychoho unіversytetu. 2013. No 1 (133). Pp. 62-67. (Ukr)
14. Kornev J.I., Yavorovsky N.A., Saveliev G.G., Galanov A.I., Zaharchenko S.M., Perekos A.E., Danilenko N.B., Yurmazova T.A. Physico-chemical Processes in Electric Discharges in Liquid Media. Proc. of 15th International Symposium on High-Current Electronics (15th SHCE). Tomsk, Russia, September 21-26, 2008. P. 480-483.
15. Shydlovska N.A., Zakharchenko S.M., Cherkaskyi O.P. Physical Prerequisites of Construction of Mathematical Models of Electric Resistance of Plasma-erosive Loads. Tekhnichna Electrodynamika. 2017. No 2. Pp. 5-12. (Ukr) DOI: https://doi.org/10.15407/techned2017.02.005
16. Shydlovska N.A., Zakharchenko S.M., Cherkaskyi O.P. Comparison of the Smoothing Efficiency of Signals of Voltage on the Plasma-erosive Load and its Current by Multi-Iterative Filtration Methods. Tekhnichna Elektrodynamika. 2017. No 4. Pp. 3-13. (Ukr) DOI: https://doi.org/10.15407/techned2017.04.003
17. Shydlovska N.A., Zakharchenko S.M., Cherkaskyi O.P. Criteria for the Necessary and Sufficient Number of Iterations of Filtering Non-periodic Non-stationary Signals by Multi-iterative Methods. Tekhnichna Elektrodynamika. 2017. No 5. Pp. 23-31. (Ukr). DOI: https://doi.org/10.15407/techned2017.05.023
18. Shcherba A.A., Zakharchenko S.N., Suprunovskaya N.I., Shevchenko M.I., Monastirskiy G.E., Peretyatko Yu.V., Petruchenko O.V. Stabilization of modes of electrotechnological systems of obtaining spark-eroded micro and nano powders. Tekhnichna electrodynamica. Tematichnyi vypusk “Silova elektronika ta energoefektivnist”. 2006. Vol. 1. Pp. 120-123. (Rus).
19. Zakharchenko S.N., Rudenko Yu.V., Cherkassky A.P. Improving the Accuracy of the Voltage Regulation in the Capacitive Energy Storage Devices for Pulse Plasma-erosion Treatment Systems of Heterogeneous Conductive Media. Tekhnichna Elektrodynamika. 2016. No 6. Pp. 30-37. (Rus). DOI: https://doi.org/10.15407/techned2016.06.030
20. Zakharchenko S.N., Kondratenko I.P., Perekos A.E., Zalutsky V.P., Kozyrsky V.V., Lopatko K.G. Influence of discharge pulses duration in a layer of iron granules on the size and structurally-phase conditions of its electroerosion particles. Eastern-European Journal of Enterprise Technologies. 2012. Vol. 6. No 5 (60). Pp. 66-72. (Rus)
21. Tesyk Yu.F., Komarov M.S., Klimenko D.M. Instantaneous current meter in power electronics devices. Pratsi Instytutu Elektrodynamiky Natsionalnoi Akademii Nauk Ukrainy. 2013. No 36. Pp. 133-138. (Ukr)
22. Xiyao Zhang. When to use an amplifier with rail-to-rail inputs and what to look for. Radiolotsman. 2016. No 9 (64). Pp. 22-24. URL: https://www.rlocman.ru/review/article.html?di=179990 (Last access data 02.10.2019). (Rus)
23. Varskyi H.M. Measuring current transducer with electronic error compensation. Pratsi Instytutu Elektrodynamiky Natsionalnoi Akademii Nauk Ukrainy. Kyiv, 2009. No 24. Pp. 119-125. (Rus)
24. Varskyi G.M. Influence of Interwinding Capacite on Exactness of Work of High-Voltage Current Transformer. Tekhnichna Elektrodynamika. 2014. No 4. Pp. 58-60. (Rus).
25. Varskyi H.M., Hrechko V.V., Tankevych E.N. Calculation of Electromagnetic System Parameters of Sensor for Electronic Current Transformer with Standardized Transient Performance. Pratsi Instytutu Elektrodynamiky Natsionalnoi Akademii Nauk Ukrainy. Kyiv, 2015. No 42. Pp. 129-135. (Rus)
26. Stognii B.S., Sopel M.F., Pankiv V.I., Tankevych Ye.M. Current Transformer Mathematical Model Based on Jiles-Atherton Theory of Ferromagnetic Hysteresis. Tekhnichna Elektrodynamika. 2016. No 3. Pp. 58-65. (Ukr). DOI: https://doi.org/10.15407/techned2016.03.058
27. Stognii B.S., Sopel M.F., Pankiv V.I., Tankevych E.M. Factors of determining the origin and amount of residual induction in the iron core of current transformers in operation. Pratsi Instytutu Elektrodynamiky Natsionalnoi Akademii Nauk Ukrainy. Kyiv, 2016. No 43. Pp. 5-13. (Ukr)
28. Starodubtsev Yu.N. Theory and design of low power transformers. Moscow: Publishing Company RadioSoft, 2005. 320 p. (Rus)
29. Starodubtsev Yu.N., Belozerov V.Ya. Magnetic properties of amorphous and nanocrystalline alloys. Yekaterinburg: Publishing House of Ural University, 2002. 384 p. (Rus)
30. Hertsyk O.M., Pereverzeva T.G., Kovbuz M.O., Boichyshyn L.M., Nosenko V.K., Borysiuk A.K. Electrical and Magnetic Properties of Multicomponent Amorphous Metal Compositions Based on Iron, Metallofizika i Noveishie Tekhnologii. 2017. Vol. 39, No. 8. Pp. 1023-1033 (Ukr). DOI: https://doi.org/10.15407/mfint.39.08.1023.
31. Margelov A. Honeywell Current Sensors. Elektronnyye komponenty. 2007. No 7. Pp. 121-126. URL: http://ecworld.ru/media/bip/pdfs/margelov_ec307.pdf (Last access data 02.10.2019). (Rus)
32. Taranov S.G., Tesyk Yu.F., Braiko V.V. Karasinskii O.L., Shuvalov G.I., Pronzeleva S.Yu. Principles of construction of current converters based on Hall sensors. Pratsi Instytutu Elektrodynamiky Natsionalnoi Akademii Nauk Ukrainy. Kyiv, 2013. No 35. Pp. 96-107. (Rus)
33. Isolated current and voltage sensors manufactured by TVELEM Ltd. Specifications - Application - Calculations. (Rus) URL: http://www.efo-power.ru/BROSHURES_CATALOGS/LEM/TVELEM_rus.pdf (Last access data 02.10.2019).
34. Jobling D. New direct amplification current sensors, comparable in performance with compensation. Silovaya Elektronika. 2014. No 6. Pp. 66-69. (Rus) URL: https://www.lem.com/ru/file/4469/download (Last access data 03.10.2019).
35. Keysight N2780B Series AC/DC Current Probes A wide selection of current probes to meet your application’s needs. Data Sheet. URL: http://literature.cdn.keysight.com/litweb/pdf/5989-6432EN.pdf (Last access data 03.10.2019).
36. SDS1000X, SDS1000X+ Series. Digital Oscilloscope. DataSheet-2016.05. URL: http://www.amt.cz/info/1/SDS1000XPLUS.pdf (Last access data 03.10.2019).
37. Data Sheet. Hall Effect Current Sensor. HS-SCH: NP. URL: http://coretech.com.ua/docs/Sensors-hall/coretech-HCS-SH.pdf (Last access data 03.10.2019).
38. Yakimov A.V. Physics of Noises and Parameter Fluctuations: Electronic Textbook. Nizhny Novgorod: Nizhny Novgorod State University, 2013. 85 p. (Rus) URL: http://www.lib.unn.ru/students/src/Yakimov_Noise.pdf (Last access data 03.10.2019).
39. Gorshkov B.L. Practical design methods for normalizing sensor signals. Based on the materials of the seminar "Practical design techniques for sensor signal conditioning". Moscow: AVTEKS, 2014. 311 p. (Rus) URL: http://www.autex.spb.su/download/seminar/ad/sensor99rus/s_11.pdf (Last access data 03.10.2019).

Received 09.10.2019  

PDF