Clean Power

Ukrainian (UA)English (United Kingdom)

The National Academy of Sciences of Ukraine


The Institute of Electrodynamics

About Institute

DOI: https://doi.org/10.15407/publishing2017.47.077

FEATURES OF RATE OF CURRENT RAISE IN THE LOAD OF SEMI-CONDUCTOR ELECTRO-DISCHARGE INSTALLATIONS

N.I. Suprunovska1, A.A. Shcherba2, S.S. Roziskulov3, Yu.V. Peretiatko4
1,2,3 – Institute of Electrodynamics of the National Academy of Sciences of Ukraine,
Peremohy, 56, Kyiv-57, 03680, Ukraine,
e-mail: This e-mail address is being protected from spambots. You need JavaScript enabled to view it
4 – National Technical University of Ukraine "Igor Sikorsky Kyiv Polytechnic Institute",
Peremohy, 37, Kyiv-56, 03056, Ukraine

The features of the change in the average rate of current rise in the load during oscillatory and aperiodic discharge of a reservoir capacitor of electric discharge installations are studied. The regularities of the change in the average rate of discharge currents rise in the load at forced limitation of currents durations and a change in the capacitance of the discharge circuit are determined. It is proved that increasing the capacity of the capacitor reduces the duration of the rise of the discharge current from zero to any fixed value less than the maximum value of the current. Based on this, it is proposed the method for increasing the rate of rise of pulsed currents in the load, which is founded on increasing the capacity of the discharged capacitor and forced interrupting the current in the load when a specified fixed value (or duration) of the current is reached. References 17, figures 5, tables 3.
Key words: transient, discharge current, capacitor capacitance, rate of current rise.


1. Asanov U.A., Tsoi A.D., Shcherba A.A., Kazekin V.I. Electroerosive technology of chemical compounds and metal powders (Chapters 2 and 3). Frunze: Ilim, 1990. 255 p. (Rus)
2. Vovchenko A.I., Tertilov R.V. Synthesis of capacitive nonlinear parametric energy sources for discharge-pulse technologies. Zbirnyk naukovykh prats Nats. Universytetu korablebuduvannia. 2010. No 4. P. 118–124. (Rus)
3. Zakharchenko S.N., I.P. Kondratenko I.P., Perekos A.E., Zalutskyi V.P., Kozyrskyi V.V., K.G. Lopatko. Influence of the discharge pulses duration in a layer of iron granules on a size and structural-phase state of its electroerosion particles. Vostochno-Evropeiskiy zhurnal peredovykh tekhnologii. 2012. Volume 6. No 5(60). P. 66–72.(Rus)
4. Kravchenko V.I., Petkov A.A. Parametric synthesis of high-voltage pulse test device with a capacitive energy storage. Elektrotekhnika i elektromekhanika. 2007. No 6. P. 70–75. (Rus)
5. Krug K.A. Physical fundamentals of electrical engineering. Moskva,Leningrad: Gosenergoizdat, 1946. 472 p. (Rus)
6. Shydlovskyi A.K., Shcherba A.A., Suprunovskaya N.I. Energy processes in the charge and discharge circuits of capacitors of electric pulse installations. Kiev: Interkontinental,Ukraina, 2009. 208 p. (Rus)
7. Shcherba A.A., Suprunovskaya N.I. Regularities of increasing the rate of discharge current rise in a load while limiting their maximum values. Tekhnichna elektrodynamika. 2012. No 5. P. 3–9. (Rus)
8. Shcherba A.A., Suprunovskaya N.I., Ivashchenko D.S. Simulation of a nonlinear resistance of electro-spark load for a synthesis of the capacitor’s discharge circuit according to time parameters. Tekhnichna elektrodynamika. 2014. No 3. P. 12–18. (Rus)
9. Shcherba A.A., Suprunovskaya N.I., Ivashchenko D.S. Simulation of a non-linear resistance of an electric-spark load taking into account its changes during the discharge current flow and its absence in the load. Tekhnichna elektrodynamika. 2014. No 5. P. 23–25. (Rus)
10. Berkowitz A.E., Hansen M.F., Parker F.T., Vecсhio K.S., Spada F.E., Lavernia E.J., Rodriguez R. Amorphous soft magnetic particles produced by spark erosion. J. of Magnetism and Magnetic Materials. 2003. Vol. 254–255. P. 1–6.
11. Berkowitz A.E., Walter J.L. Sparc Erosion: A Method for Producing Rapidly Quenched Fine powders. J. of Mater. Res. March/April, 1987. No 2 (2). P. 277–288.
12. Cabanillas E.D., Lopez M., Pasqualini E.E., Cirilo Lombardo D.J. Production of uranium-molybdenum particles by spark-erosion. J. of Nuclear Materials. 2004. No 324. P. 1–5. DOI: https://doi.org/10.1016/j.jnucmat.2003.08.040
13. Casanueva R., Azcondo F.J, Branas C., Bracho S. Analysis, design and experimental results of a high-frequ¬ency power supply for spark erosion. IEEE Transactions on Power Electronics. 2005. Vol. 20. P. 361–369. DOI: https://doi.org/10.1109/TPEL.2004.842992
14. Mysinski W. Power supply unit for an electric discharge machine. 13th European Conference on Power Electronics and Applications, 2009. EPE '09. P. 1–7.
15. Nguyen P.K., Lee K.H., Moon J., Kim K.A., Ahn K.A., Chen L.H., Lee S.M., Chen R.K., Jin S. and Berkowitz A.E. Spark erosion: a high production rate method for producing Bi0.5Sb1.5Te3 nanoparticles with enhanced thermoelectric performance. Nanotechnology, 23 (2012). P. 1–7. DOI: https://doi.org/10.1088/0957-4484/23/41/415604
16. Sen B., Kiyawat N., Singh P.K., Mitra S., Ye J.H., Purkait P. Developments in electric power supply configurations for electrical-discharge-machining (EDM). The Fifth International Conference on Power Electronics and Drive Systems, 2003. PEDS 2003. Vol. 1. P. 659–664. DOI: https://doi.org/10.1109/PEDS.2003.1282955
17. Suprunovska N.I., Shcherba A.A. Features of the Energy Interchange Between Capacitors in the Circuit Using Unidirectional Commutator or Bidirectional One. Proceedings of 2016 IEEE 2nd International Conference on Intelligent Energy and Power Systems (IEPS). 2016. P. 45–48.  DOI: https://doi.org/10.1109/IEPS.2016.7521843