Clean Power

Ukrainian (UA)English (United Kingdom)

The National Academy of Sciences of Ukraine


The Institute of Electrodynamics

About Institute

DOI: https://doi.org/10.15407/publishing2017.47.037

PARAMETER IDENTIFICATION METHOD OF THE TURBINE-GENERATOR SHAFT ELASTIC MODEL FOR TORSIONAL VIBRATIONS SIMULATION

Yu.V. Kuievda, S.M. Baluta
National University of Food Technologies,
Volodymyrska St., 68, Kyiv, 01601, Ukraine,
е-mail: This e-mail address is being protected from spambots. You need JavaScript enabled to view it , This e-mail address is being protected from spambots. You need JavaScript enabled to view it

The mathematical models of different dimensions with a finite number of degrees of freedom of a powerful turbine-generator shaft, which is used to calculate the torsional vibrations of the shaft train, were compared. The computational studies of transients during switching of the turbine-generator to parallel operation with the electrical system with no-load conditions using different mathematical models of the shaft train and comparison of torsional moments were performed. The method of parameter identification for the multi-mass model of the shaft line of the turbine set using an iterative conjugate gradient method and a heuristic genetic algorithm was developed. The performed computational studies have shown efficiency of the developed technique. References 12, figures 6.
Key words: turbine-generator, shaft, multiple-mass model, parameter identification, genetic algorithm, conjugate gradient method.


1. Biderman V.L. Theory of mechanical oscillations. Moskva: Vyssh. shkola, 1980. 408 p. (Rus)
2. Bovsunovskyi A.P., Kuevda Yu.V. Consideration of turbine-generator unit shaft swings in evaluation of fatigue damage of shaft elements during successful out-of-phase closing. Pratsi Instytutu elektrodynamiky NAN Ukrainy. 2015. No 42. P. 56–59. (Rus)
3. Detinko F.M., Zagorodnaya G.A., Fastovskyi V.M. Strength and vibrations of electrical machines. Leningrad: Energiya, 1969. 440 p. (Rus)
4. Kyrylenko O.V., Segeda M.S., Butkevych O.F., Mazur T.A. Mathematical modeling in electric power engineering. Lviv: Vydavnytstvo Nats. Universytetu Lvivska politekhnika, 2010. 608 p. (Ukr)
5. Lashko V.A., Leibovych M.V. Matrix methods in the calculations of torsional oscillations of power installations with ICE. Khabarovsk: Izdatelstvo KhGTU, 2003. 211 p. (Rus)
6. Lukin V.N., Romanov M.F., Tolkachev E.A. System analysis of electrical circuits and machines. Leningrad: Izdatelstvo Leningr. universiteta, 1985. 136 p. (Rus)
7. Moiseev N.N., Ivanilov Yu.P., Stoliarova E.M. Optimization methods. Moskva: Glavnaya redaktsiya fiz.mat. literatury, 1978. 352 p. (Rus)
8. Rutkovskaya D., Pilnskyi M., Rutkovskyi L. Neural networks, genetic algorithms and fuzzy systems. Moskva: Goryachaya liniya.Telekom, 2006. 452 p. (Rus)
9. Chaban A.V. Algorithm for calculating mechanical torsional oscillatory processes on an example of a steam turbine-rotor system of a synchronous turbogenerator. Visnyk Nats. universytetu Lvivska politekhnika. 2006. No 556. P. 86–90. (Ukr)
10. Bovsunovskii A.P. Torsional vibration in steam turbine shafting in turbogenerator abnormal modes of operation. Strength of Materials. 2012. 44 (2). P. 177–186. DOI: https://doi.org/10.1007/s11223-012-9370-9
11. Hosea M.E., Shampine L.F. Analysis and implementation of TR-BDF2. Applied Numerical Mathematics. 1996. 20. P. 21–37. DOI: https://doi.org/10.1016/0168-9274(95)00115-8
12. Isermann R., Munchhof M. Identification of Dynamic systems. Berlin-Heidelberg: Springer, 2011. 705 p.  DOI: https://doi.org/10.1007/978-3-540-78879-9