Clean Power

Ukrainian (UA)English (United Kingdom)

The National Academy of Sciences of Ukraine


The Institute of Electrodynamics

About Institute

DOI: https://doi.org/10.15407/publishing2018.49.051

DYNAMIC PROPERTIES OF THE SENSORLESS VECTOR CONTROL SYSTEM OF INDUCTION MOTOR DRIVE OF ELECTRIC VEHICLE

B. Pryymak, N. Krasnoshapka, F. Lozada, O. Dolganov
National Technical University of Ukraine "Igor Sikorsky Kyiv Polytechnic Institute",
Peremohy, 37, Kyiv-56, 03056, Ukraine,
е-mail: This e-mail address is being protected from spambots. You need JavaScript enabled to view it

The parametric synthesis of the sensorless vector control system of an induction motor (IM) of electric vehicle with the rotor speed observer, which is constructed according to the structure of the model reference adaptive system, is made. Through mathematical modeling, the dynamical properties of the synthesized system in operating modes, which are characteristic for a traction drive of an electric vehicle, are investigated. To improve the system, an algorithm for the speed observer adaptation mechanism has been upgraded. Due to this, in the sensorless control system of IM improved quality and reduced energy losses in transient processes caused by changes in motor load. References References 10, figures 7, table 1.
Key words: induction motor, sensorless drive, vector control, speed observer, electric vehicle.



1. Pryimak B.I. Power loss models in a controlled asynchronous machine for energy saving tasks. Tekhnichna Elektrodynamika. 2005. № 1. P. 29–38. (Ukr)
2. Gadoue S.M., Giaouris D., Finch J.W. Sensorless control of induction motor drives at very low and zero speeds using neural network flux observers. IEEE Trans. Ind. Elec. 2009. Vol. 56, No. 8. P. 3029–3039. DOI: https://doi.org/10.1109/TIE.2009.2024665
3. Kubota H., Matsuse K. Speed sensorless field-oriented control of induction motor with rotor resistance adaptation. IEEE Trans. Ind. Applicat. 1994. Vol. 30, No 5. P. 1219–1224. DOI: https://doi.org/10.1109/28.315232
4. Maiti S., Chakraborty C., Hori Y., Ta M.C. Model reference adaptive controller-based rotor resistance and speed estimation techniques for vector controlled induction motor drive utilizing reactive power. IEEE Trans. Ind. Elec. 2008. Vol. 55, No. 2. P. 594–601. DOI: https://doi.org/10.1109/TIE.2007.911952
5. Novotny D.W., Lipo T.A. Vector control and dynamics of AC drives, Oxford: Clarendon press. 2005. 440 p.
6. Orlowska-Kowalska T., Dybkowski M. Stator-Current-Based MRAS Estimator for a Wide Range Speed-Sensorless Induction Motor Drive. IEEE Trans. Ind. Elec. 2010. Vol. 57, No. 4. P. 1296–1308. DOI: https://doi.org/10.1109/TIE.2009.2031134
7. Salvatore L., Stasi S., Cupertino F. Improved rotor speed estimation using two Kalman filter-based algorithms. Proc. IEEE-IAS Annu. Meeting. 2001. P. 125–132. DOI: https://doi.org/10.1109/IAS.2001.955402
8. Shi K.L., Chan T.F., Wong Y.K., Ho S.L. Speed estimation of an induction motor drive using an optimized extended Kalman filter. IEEE Trans. Ind. Elec. 2002. Vol. 49, No. 1. P. 124–133. DOI: https://doi.org/10.1109/41.982256
9. Sun X., Chen L., Yang Z., Zhu H. Speed-sensorless vector control of a bearingless induction motor with artificial neural network inverse speed observer. IEEE/ASME Trans. Mechatr. 2013. Vol. 18, No. 4. P. 1357–1366.
10. Vasic V., Vukosavic S.N., Levi E. A stator resistance estimation scheme for speed sensorless rotor flux oriented induction motor drives. IEEE Trans. Energy Conversion. Dec. 2003. Vol. 18, No. 4. P. 476–483.  DOI: https://doi.org/10.1109/TEC.2003.816595